如图,已知tanα=,如果F(4,y)是射线OA上的点,那么F点的坐标是 .
如图1,小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形,正方形的面积为 ;再把正方形的各边延长一倍得到正方形(如图2),如此进行下去,正方形的面积为 .(用含有n的式子表示,n为正整数)
定义[]为函数的特征数,下面给出特征数为[,,] 的函数的一些结论:①当时,函数图象的顶点坐标是;②当时,函数在时,随的增大而减小;③无论m取何值,函数图象都经过同一个点. 其中所有的正确结论有 .(填写正确结论的序号)
如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部[正好接触到路灯乙的底部.已知小明的身高为1.6米,那么路灯甲的高为 米.
分解因式:=" " .
如图13,在等腰中,,,点从点开始沿边以每秒1 的速度向点运动,点从点开始沿边以每秒2 的速度向点运动,保持垂直平分,且交于点,交于点.点分别从两点同时出发,当点运动到点时,点、停止运动,设它们运动的时间为.(1)当= 秒时,射线经过点;(2)当点运动时,设四边形的面积为,求与的函数关系式(不用写出自变量取值范围);(3)当点运动时,是否存在以为顶点的三角形与△相似?若存在,求出的值;若不存在,请说明理由.