(文科)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程;(Ⅱ)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明;(ⅱ)求证:线段的长为定值.
证明函数是增函数,并求函数的最大值和最小值。
画出函数的图象,并求其函数的值域。
证明函数是奇函数。
已知集合A=,B={x|2<x<10},C={x|x<a},全集为实数集R. (Ⅰ)求A∪B,(CRA)∩B; (Ⅱ)如果A∩C≠φ,求a的取值范围.
(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式; (2)求证以ON为直径的圆与直线相切; (3)求线段MN的长(用表示),并证明M、N两 点到直线的距离之和等于线段MN的长.