某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,为方案一的函数图像,为方案二的函数图像.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):(1)求的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)小丽应选择哪种销售方案,才能使月工资更多?
(8分)如图,在4×4的正方形网格中,每个小正方形的边长都是1,△ABC三个顶点分别在正方形网格的格点上,试判断△ABC是否是直角三角形.
已知x=-,求的值.
(10分) 化简: (1)(2)计算:
如图一,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,. (1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标; (2)如图二,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少? (3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.
某蒜苔生产基地喜获丰收收蒜苔200吨。经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:
若经过一段时间,蒜苔按计划全部售出后获得利润为(元)蒜苔(吨),且零售是批发量的1/3. (1)求与之间的函数关系? (2)由于受条件限制经冷库储藏的蒜苔最多80吨,求该生产基地计划全部售完蒜苔获得最大利润。