如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
(本题7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 根据以上情境,解决下列问题: (1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是 . (2)小聪的作法正确吗?请说明理由.
(本题6分)如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,求BD的长度.
(本题6分)如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.
(本题6分)已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E且AB=DE,连接AC、DF.求证:∠A =∠D.
(本题6分)如图,已知△ABC中,∠ACB=90°. (1)利用直尺和圆规作图(保留作图痕迹,不要求写作法),作一个点P,使得点P到∠ACB两边的距离相等,且PA=PB; (2)利用所学知识得到△ABP是 三角形.