(本小题满分12分)如图1所示,直角梯形,,,,、为线段、上的点,且,设,沿将梯形翻折,使平面平面(如图2所示). (1)若以、、、为顶点的三棱锥体积记为,求的最大值及取最大值时的位置;(2)在(1)的条件下,试在线段上的确定一点使得,并求直线与平面所成的角的正弦值.
已知z、w为复数,(1+3i)z为实数,w=.
(13分) (1)写出a2, a3, a4的值,并猜想数列{an}的通项公式; (2)用数学归纳法证明你的结论;
(本小题满分12分)已知=(2,1),=(1,7),=(5,1).设M是直线OP上的一点(其中O为坐标原点),当取最小值时: (1)求; (2)设∠AMB=θ,求cosθ的值.
(本小题满分12分) 已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,). (1)若||=||,求角α的值; (2)若·=-1,求的值.
(本小题满分12分)已知函数y=cos2x+sinxcosx+1,x∈R. (1)求它的振幅、周期和初相; (2)用五点法作出它的简图; (3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?