(本小题满分10分,坐标系与参数方程选讲)己知在平面直角坐标系中,圆的参数方程为(为参数).以原点为极点,以轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为,直线与圆相交于两点,求弦的长.
已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为________.
已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.
如图,在正方体ABCD-A1B1C1D1中,点P在直线BC1上运动时,有下列三个命题:①三棱锥AD1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变.其中真命题的序号是________.
如图为某几何体的三视图,则该几何体的体积为________.
一个圆锥和一个半球有公共底面,如果圆锥的体积和半球的体积相等,则这个圆锥的母线与轴所成角正弦值为________.