如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D、四点的位置,并顺次连接ABCD;(2)四边形ABCD的面积是________.(3)把四边形ABCD向左平移5个单位,再向上平移1个单位得到四边形A′B′C′D′,写出点A′、B′、C′、D′的坐标.
(本小题8分)一只不透明的袋子里共有4个球,其中3个白球,1个红球,它们除颜色外均相同. (1)从袋子中随机摸出一个球是白球的概率是多少? (2)从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.
(本小题9分)如图,在平面直角坐标系xOy中,边长为2的正方形OABC 的顶点A、C分别在x轴的正半轴和y轴的负半轴上,二次函数y=+bx+c的图象经过B、C两点. (1)求该二次函数的解析式; (2)结合函数的图象探索:当y>0时,x的取值范围.
(本小题8分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局. (1)请用画树状图的方法,列出所有可能出现的结果; (2)试用概率说明游戏是否公平.
(本小题9分)如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC的长.
(本小题9分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. (1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?