(本小题满分12分)为了响应学校“学科文化节”活动,数学组举办了一场数学知识竞赛,共分为甲、乙两组.其中甲组得满分的有个女生和个男生,乙组得满分的有个女生和个男生.现从得满分的学生中,每组各任选个学生,作为数学组的活动代言人.(1)求选出的个学生中恰有个女生的概率;(2)设为选出的个学生中女生的人数,求的分布列和数学期望.
已知函数,函数 ⑴当时,求函数的表达式; ⑵若,函数在上的最小值是2 ,求的值;
由下列不等式:,,,,,你能得到一个怎样的一般不等式?并加以证明.
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行于直线 4x-y-1=0,且点 P0 在第三象限, ⑴求P0的坐标; ⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
已知数列满足(). (1)若数列是等差数列,求它的首项和公差; (2)证明:数列不可能是等比数列; (3)若,(),试求实数和的值,使得数列为等比数列;并求此时数列的通项公式.