(本小题满分12分)设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于两点,线段的长是,的中点到轴的距离是.(1)求抛物线的标准方程;(2)在抛物线上是否存在不与原点重合的点,使得过点的直线交抛物线于另一点,满足,且直线与抛物线在点处的切线垂直?并请说明理由.
(本小题满分12分) 已知函数的最大值为,是集合中的任意两个元素,且||的最小值为。 (I)求,的值 (II)若,求的值
选修4-5:不等式选讲 已知函数 (1)求不等式的解集; (2)若关于x的不等式恒成立,求实数的取值范围.
选修4—4:坐标系与参数方程 直线(极轴与x轴的非负半轴重合,且单位长度相同)。 (1)求圆心C到直线的距离; (2)若直线被圆C截的弦长为的值.
四、选做题(本小题满分10分。请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分) 22.选修4-1:几何证明选讲 如图,已知点C在圆O直径BE的延长线上,CA切 圆O于A点,DC是∠ACB的平分线并交AE于点F、交 AB于D点,则∠ADF=?
(本小题满分12分)已知椭圆的离心率为,过焦点且垂直于长轴的直线被椭圆截得的弦长为,过点的直线与椭圆相交于两点 (1)求椭圆的方程 (2)设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围