(本小题满分12分)编号分别为的名篮球运动员在某次篮球比赛中的得分记录如下:(1)完成如下的频率分布表:
(2)从得分在区间内的运动员中随机抽取人 , 求这人得分之和大于的概率.
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{an}的通项公式; (2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
在数列{an}中,an+1+an=2n-44(n∈N*),a1=-23. (1)求an; (2)设Sn为{an}的前n项和,求Sn的最小值.
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项. (1)求数列{an},{bn}的通项公式; (2)设数列{cn}对n∈N*,均有++…+=an+1成立,求c1+c2+c3+…+c2014的值.
已知等差数列{an}中,a5=12,a20=-18. (1)求数列{an}的通项公式; (2)求数列{|an|}的前n项和Sn.
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=+n-4. (1)求证{an}为等差数列; (2)求{an}的通项公式.