如图所示,在△ABC中,∠B=90º,△ABC三边长为整数且两直角边的长为关于的一元二次方程的两实数根,其中为正整数,且AB<BC (1)求△ABC的三边长; (2)点P从A点开始沿AB边向点B以1个单位长/秒的速度移动,而点Q从B点开始沿BC边向C以2个单位长/秒的速度移动,如果P,Q分别从A,B同时出发,经过几秒钟,△PBQ的面积为△ABC面积的?
如图,点D、E分别在线段AB、AC上,已知AD=AE,∠B=∠C,H为线段BE、CD的交点,求证:BH=CH.
化简求值[(3m-n)2+(3m+n)(3m-n)+6mn]÷2m,其中m=.
分解因式 (1) (2) (3)
计算: (1) (2)
如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正反向运动,3秒后,两点相距15个单位长度。已知动点A,B的速度之比为(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置 (2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两动点中间? (3)在(2)中,原点在A,B两点的中间位置时,若A,B两点同时开始向数轴负方向运动时,另一动点C由(2)中点B的位置出发向A运动,当它遇到A后立即返回向点B运动,遇到点B后又立即返回向点A运动....如此往返,直到点B追上点A时,点C立即停止运动。若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?