(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD.(1)若AC=4,求直线CD的方程;(2)证明: OCD的外接圆恒过定点(异于原点O).
已知椭圆, 得且的公共弦过椭圆的右焦点。 ⑴当轴时,求的值,并判断抛物线的焦点是否在直线上; ⑵若,且抛物线的焦点在直线上,求的值及直线AB的方程。
⑴求过点向圆所引的切线方程; ⑵过点向圆引二条切线,切点分别是,求直线的方程。
在正方体,求所成角的正弦值。
在正方体中, ⑴求证:∥平面 ⑵求与平面所成的角。
求与定点及定直线的距离的比是5:4的点P的轨迹