如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C。⑴请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,作出该圆弧所在圆的圆心D,并连接AD、CD。⑵请在⑴的基础上,完成下列填空:①写出点的坐标: C_______、D_______;②直接写出⊙D半径=_______(结果保留根号);③直接写出∠ADC=_______;④若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面的半径.
如图,在直角坐标系xOy中,一直线y=2x+b经过点A(-1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
某演艺大厅有2个入口和3个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开(1)用树状图表示,小明从进入到离开,对于入口和出口的选掉有多少种不同的结果?(2)小明从入口A进入并从出口1离开的概率是多少?
如图,在四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC•(1)求证:△ABD≌△ECB;(2)若∠EDC=65°,求∠ECB的度数;(3)若AD=3,AB=4,求DC的长.
解分式方程:.
先化简,再求值:()÷,其中a=+1.