用棋子摆出下列一组三角形,三角形每边有枚棋子,每个三角形的棋子总数是.按此规律推断,当三角形边上有枚棋子时,该三角形的棋子总数等于 :
小张和小罗玩一种转盘游戏,如图是两个完全相同的转盘,转盘一被分成面积相等的三个扇形,用数字“1”、“2”、“3”表示,转盘二被分成面积相等的四个扇形,用数字“1”、“2”、“3”、“4”表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字之积为偶数,则小张获胜;若两指针所指数字之积为奇数,则小罗获胜;若其中一个指针指向扇形的分界线,则都重转一次.你认为游戏是否公平?请说明理由.若不公平,请你修改游戏规则,使游戏公平.
在平面直角坐标系中,△AOB的位置如图。(1)若△A1OB1是△AOB关于原点O的中心对称图形,则顶点A1的坐标为( , );(2)在网格上画出△AOB关于y轴对称的图形;(3)在网格上画出将△AOB三个顶点的横、纵坐标均扩大为原来的2倍后的图形,并求出变换后图形的周长等于______;若把△AOB顶点的横、纵坐标均扩大为原来的n倍,试猜想变换后图形的周长等于______。
如图,在矩形ABCD中,E为AD的中点,求证∠EBC=∠ECB.
(1)计算:4sin60°+ (2)化简:
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分别为边AB、AC的中点,连结DE,点P从点A出发,沿折线AE-ED-DB运动,到点B停止.点P在折线AE-ED上以每秒1个单位的速度运动,在DB上以每秒个单位的速度运动. 过点P作PQ⊥BC于点Q,以PQ为边在PQ右侧作正方形PQMN,使点M落在线段BC上.设点P的运动时间为秒().(1)在整个运动过程中,求正方形PQMN的顶点N落在AB边上时对应的的值;(2)连结BE,设正方形PQMN与△BED重叠部分图形的面积为S,请直接写出S与之间的函数关系式和相应的自变量的取值范围;(3)当正方形PQMN顶点P运动到与点E重合时,将正方形PQMN绕点Q逆时针旋转60°得正方形P1 Q M1 N1,问在直线DE与直线AC上是否存在点G和点H,使△GHP1是等腰直角三角形? 若存在,请求出EG的值;若不存在,请说明理由.