(本题10分)如图所示,△ABC中,∠BAC=900,AB=AC=1,点D是BC上一个动点(不与B.C重合),在AC上取点E,使∠ADE=450.(1)求证:△ABD∽△DEC.(2)设BD=x,AE=y,求y关于x的函数关系式。(3当△ADE是等腰三角形时,求AE的长。
如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF. (1)求证:四边形EFGH是平行四边形; (2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
先化简,再求值:,其中x是方程x2-2x=0的根.
如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x. (1)求AD的长; (2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由; (3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.
大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:
销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+. (1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系. (2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式. (3)这50天中,该超市第几天获得利润最大?最大利润为多少?
已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F. (1)当直线m经过B点时,如图1,易证EM=CF.(不需证明) (2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.