图1是某城市四月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2. 根据图中信息,解答下列问题: (1)将图2补充完整; (2)这8天的日最高气温的中位数是 ºC; (3)计算这8天的日最高气温的平均数.
在梯形中,,,,点分别在线段上(点与点不重合),且,设,.(1)求与的函数表达式;(2)当为何值时,有最大值,最大值是多少?
某农场去年种植了10亩地的南瓜,亩产量为2000,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg,求南瓜亩产量的增长率.
如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.(1)如果,求点运动的时间;(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20时,按2元/计费;月用水量超过20时,其中的20仍按2元/收费,超过部分按元/计费.设每户家庭用用水量为时,应交水费元.(1)分别求出和时与的函数表达式;(2)小明家第二季度交纳水费的情况如下:
小明家这个季度共用水多少立方米?
如图,两地之间有一座山,汽车原来从地到地须经地沿折线行驶,现开通隧道后,汽车直接沿直线行驶.已知,,,则隧道开通后,汽车从地到地比原来少走多少千米?(结果精确到)(参考数据:,)