已知函数在处取得极值.(1)求的值;(2)求函数在上的最小值;(3)求证:对任意、,都有.
命题方程有两个不等的正实数根, 命题方程无实数根。若“或”为真命题,求的取值范围。
函数在同一个周期内,当 时,取最大值1,当时,取最小值。(1)求函数的解析式(2)函数的图象经过怎样的变换可得到的图象?(3)若函数满足方程求在内的所有实数根之和.
某港口海水的深度(米)是时间(时)()的函数,记为:已知某日海水深度的数据如下:
经长期观察,的曲线可近似地看成函数的图象(I)试根据以上数据,求出函数的振幅、最小正周期和表达式;(II)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)
设向量.(Ⅰ)求;(Ⅱ)若函数,求的最小值、最大值.
如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、 PC的中点. (1)求证:EF∥平面PAD; (2)求证:EF⊥CD; (3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.