已知函数在处取得极值.(1)求的值;(2)求函数在上的最小值;(3)求证:对任意、,都有.
在△ABC中,分别是的对边长,已知. (Ⅰ)若,求实数的值; (Ⅱ)若,求△ABC面积的最大值.
设二次函数满足条件:①当时,的最大值为0,且成立;②二次函数的图象与直线交于、两点,且. (Ⅰ)求的解析式; (Ⅱ)求最小的实数,使得存在实数,只要当时,就有成立.
在数列中,, (Ⅰ)求,判断数列的单调性并证明; (Ⅱ)求证:; (Ⅲ)是否存在常数,对任意,有?若存在,求出的值;若不存在,请说明理由.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.