某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.(1)当一次订购量为多少个时,每件商品的实际批发价为102元?(2)当一次订购量为个, 每件商品的实际批发价为元,写出函数的表达式;(3)根据市场调查发现,经销商一次最大定购量为个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.
.某飞机制造公司一年中最多可生产某种型号的飞机100架。已知制造x架该种飞机的产值函数为R(x)=3000x-20x2 (单位:万元),成本函数C(x)="500x+4000" (单位:万元)。利润是收入与成本之差,又在经济学中,函数¦(x)的边际利润函数M¦x)定义为:M¦x)=¦(x+1)-¦(x). ①、求利润函数P(x)及边际利润函数MP(x);(利润=产值-成本) ②、问该公司的利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值?
.(1)、求经过直线和的交点,且垂直于直线的直线方程.(2)、直线l经过点,且和圆C:相交,截得弦长为,求l的方程.
(普通班)如图所示,从椭圆上一点M向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点A及短轴端点B的连线.(1) 求椭圆的离心率e;(2) 设Q是椭圆上任意一点,是右焦点,是左焦点,求的取值范围;
(奥班)已知双曲线C:, (1) 求双曲线C的渐近线方程;(2) 已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记,求λ的取值范围;(3) 已知点D、E、M的坐标分别为(-2,-1)、(2,-1)、(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.
椭圆与直线相交于A,B两点,C是AB的中点,若OC的斜率为,求椭圆的方程。