如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.
(本小题满分12分)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA=a,点O、D分别是AC、PC的中点,OP⊥底面ABC。(1)求三棱锥P-ABC的体积;(2)求异面直线PA与BD所成角余弦值的大小。
(本小题满分12分)在区间中随机地取出两个数,求两数之和小于的概率。
(本小题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题: (1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?共有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
(本小题满分12分)设函数,已知 是奇函数。(1)求、的值。(2)求的单调区间与极值。
设命题:在区间上是减函数;命题:是方程的两个实根,不等式对任意实数恒成立;若为真,试求实数的取值范围。