(本小题满分13分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下: 甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
设函数(),其导函数为. (1)当时,求的单调区间; (2)当时,,求证:.
设分别是椭圆的左,右焦点. (1)若是椭圆在第一象限上一点,且,求点坐标; (2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次任意抽取3道题,独立作答,然后由乙回答剩余3题,每人答对其中的2题就停止答题,即闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是. (1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为,求的分布列及数学期望.
如图,已知三棱柱的侧棱与底面垂直,且,,,点分别为、、的中点. (1)求证:平面; (2)求证:; (3)求二面角的余弦值.
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求的取值范围.