如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(1,﹣2).直线OM是一次函数y=x的图像.让⊙A沿y轴正方向以每秒1个单位长度移动,移动时间为t.(1)填空①直线OM与x轴所夹的锐角度数为 °;②当t= 时,⊙A与坐标轴有两个公共点;(2)当t>3时,求出运动过程中⊙A与直线OM相切时的t的值;(3)运动过程中,当⊙A与直线OM相交所得的弦长为1时,求t的值.
先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.
如图,▱ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件 使四边形AECF为菱形.
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E, 证明:DE=AD+BE;
如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.
已知:∠B=∠C,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F.,求证:BE=CF.