(本小题满分14分)如图,在四棱锥中,底面是正方形,平面.点是线段的中点,点是线段上的动点.(Ⅰ)若是的中点,求证://平面;(Ⅱ)求证:; (Ⅲ)若,,当三棱锥的体积等于时,试判断点在边上的位置,并说明理由.
(本小题满分12分) 已知函数的定义域是,对于任意的,有,且当时,. (Ⅰ)验证函数是否满足上述这些条件; (Ⅱ)你发现这样的函数还具有其它什么样的主要性质?试就函数的奇偶性、单调性的结论写出来,并加以证明.
(本小题满分12分) 某车间生产一种仪器的固定成本是10000元,每生产一台该仪器需要增加投入100元,已知总收入满足函数:,其中是仪器的月产量(总收入=总成本+利润). (Ⅰ)将利润(用表示)表示为月产量的函数; (Ⅱ)当月产量为何值时,车间所获利润最大?最大利润是多少元?
(本小题满分12分) 已知函数. (Ⅰ)求函数的最小正周期和单调递增区间; (Ⅱ)函数的图象可由函数的图象经过怎样的变换得出?
(本小题满分12分) 已知集合,集合. (Ⅰ)若,求; (Ⅱ)若全集U=R,且,求实数的取值范围.
(本小题满分12分) 已知向量a,向量b,且ab,若(a-b)⊥a. (Ⅰ)求实数的值; (Ⅱ) 求向量a、b的夹角的大小.