(本小题满分14分)如图,在四棱锥中,底面是正方形,平面.点是线段的中点,点是线段上的动点.(Ⅰ)若是的中点,求证://平面;(Ⅱ)求证:; (Ⅲ)若,,当三棱锥的体积等于时,试判断点在边上的位置,并说明理由.
(本题满分14分) 在△ABC中,角A,B,C所对的边为a,b,c,已知sin=.(Ⅰ) 求cos C的值;(Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=sin2 C,求a,b及c的值.
已知(其中为实数).(1)若在处取得极值为2,求的值;(2)若在区间上为减函数且,求的取值范围.
本题满分12分)在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,每个工作台上有若干名工人.现要在与之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.(1)若每个工作台上只有一名工人,试确定供应站的位置;(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
奇函数的定义域为,其中为指数函数且过点(2,9).(1)求函数的解析式;(2)若对任意的,不等式恒成立,求实数的取值范围.
已知向量,若且(1)求的值;(2)求函数的最大值及取得最大值时的的集合;(3)求函数的单调增区间.