如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1; (2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E. (1)求证:BE=DE. (2)若四边形ABCD的面积为9,求BE的长
甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了h; (2)求线段DE对应的函数解析式; (3)求轿车从甲地出发后经过多长时间追上货车.
如图,在矩形ABCD中,点E在AD上,EC平分∠BED. (1)△BEC是否为等腰三角形?为什么? (2)若AB=1,∠ABE=45°,求BC的长.
已知一次函数()图象过点(0, 2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.
扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题: (1)这次被调查的学生共有人. (2)请你将统计图1补充完整. (3)统计图2中D项目对应的扇形的圆心角是度. (4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.