如图,在河岸l的同侧有一村庄A和自来水厂B,现要在河岸l上建一抽水站D,把河中的水输送到自来水厂处理后,再送往A村,为了节省资金,所铺设的水管应尽可能短,问抽水站D应建在何处?应沿怎样的路线来铺设水管?在图中画出来.
如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.
当x满足条件时,求出方程的根.
如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.
如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形. (1)试求b,c的值,并写出该二次函数表达式; (2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问: ①当P运动到何处时,有PQ⊥AC? ②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
已知:关于x的一元二次方程(k是整数). (1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根分别为x1,x2(其中x1<x2),设,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.