如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.
如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若已知BC=15cm,AC=20cm.求AB和CD的长.
某消防队员进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现最多只能靠近建筑物12米,即AD=BC=12米,此时建筑物中距离地面11.8米高的P处有一被困人员需要救援,已知消防云梯底部A距离地面2.8米,即AB=2.8米,则消防车的云梯至少要伸长 米.
已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.求证:△ABE≌△CAD.
先化简,再求值:¸,其中
解方程:.