如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.
丹东市为了增强学生体质,全面实施“学生饮用奶”营养工程.派波牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.十四中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有 名; (2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)本校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往本校的牛奶中,草莓味要比原味多送多少盒?
解不等式组:,并在数轴上表示出不等式组的解集.
(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5, 5,求六边形ABCDEF的面积.小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于 .(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.
如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路运动,运动速度为每秒1个单位,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).(1)经过A、B、C三点的抛物线的解析式的对称轴为 .(2)设经过A、B、C三点的抛物线的对称轴与直线OB的交点为M,线段PQ是否能经过点M,若能请求出t的值(或t的取值范围),若不能,请说明理由.(3)当Q在BC上运动时,以线段PQ为直径的圆能否与直线AB相切?若能请求出t的值,若不能,请说明理由.
目前节能灯在城市已基本普及,今年全省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时最大利润为多少元?