如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.
在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3)。(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;(2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与⊙P的位置关系。
小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角。第二步:小红量得测点D处到树底部B的水平距离。第三步:量出测角仪的高度。之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图。请你根据两个统计图提供的信息解答下列问题。(1)把统计图中的相关数据填入相应的表格中:
(2)根据表中得到的样本平均值计算出风筝的高度AB(参考数据:,,结果保留3个有效数字)。
先阅读以下材料,然后解答问题:材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到(,3),再向下平移2个单位得到(,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。设平移后的抛物线的解析式为。则点(,1),(0,2)在抛物线上。可得:,解得:。所以平移后的抛物线的解析式为:。根据以上信息解答下列问题:将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。
根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 ,,放入一个大球水面升高 ;(2)如果要使水面上升到50,应放入大球、小球各多少个?
如图,与关于O点中心对称,点E、F在线段AC上,且AF=CE。求证:FD=BE。