如图,△ABC内接于⊙O,AB是⊙O的直径,C是的中点,弦CE⊥AB于点H,连结AD,分别交CE、BC于点P、Q,连结BD(1)求证:∠ACH=∠CBD;(2)求证:P是线段AQ的中点;(3)若⊙O 的半径为5,BH=8,求CE的长.
实践应用(本小题满分6分)国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.2012年,为了了解我市毕业班学生体育活动情况,随机对我市240名毕业班学生进行调查,调查内容为:以下是根据所得的数据制成的统计图的一部分.问题:根据以上信息,解答下列问题:(1)每天在校锻炼时间超过1小时的人数是 ▲ ;(2)请将条形图补充完整;(3)2011年我市初中毕业生约为8.4万人,请你估计今年全市初中毕业生中每天锻炼时间低于0.5小时的学生约有多少万人?
推理证明(本小题满分6分)如图,已知AB=AC,AD=AE.求证:BD=CE.
运算求解(本小题满分10分)(1)解不等式,并把它的解集在数轴上表示出来. (2)解方程:
计算化简(本小题满分10分)(1)计算: (2)化简:,然后选择一个合适的的值代入上式求值.
如图,在△ABC中,AC = BC,AB = 8,CD⊥AB,垂足为点D.M为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC = MN.设AM = x.(1)如果CD = 3,AM = CM,求AM的长;(2)如果CD = 3,点N在边BC上.设CN = y,求y与x的函数解析式,并写出函数的定义域;(3)如果∠ACB = 90°,NE⊥AB,垂足为点E.当点M在边AB上移动时,试判断线段ME的长是否会改变?说明你的理由.