根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下根据以上信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若北京市约有2100万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,则抽取的两人恰好是甲和乙的概率为 .
(本小题满分8分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下: 请你根据统计图提供的信息,解答下列问题: (1)条形统计图中,m=,n=; (2)扇形统计图中,艺术类读物所在扇形的圆心角是度; (3)学校计划购买课外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
(本小题满分10分) (1)计算; (2)化简.
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围; (3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
(1)知识再现 如图(1):若点A,B在直线l同侧,A,B到l的距离分别是3和2,AB="4,现在直线l上找一点P,使AP+BP的值最小,做法如下:" 作点A关于直线l的对称点A′,连接BA′,与直线l的交点就是所求的点P,线段BA′的长度即为AP+BP的最小值,请你求出这个最小值. (2)实践应用 ①如图(2),⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC="60°P是OB上一动点" ,则PA+PC的最小值是 ②如图(3),Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为 ③如图(4),菱形ABCD中AB="2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点" , 则PK+QK的最小值为 ④如图(5),在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=,将△ACD沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 (3)拓展延伸 如图(6):在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD,保留作图痕迹,不必写出作法.
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD. (1)求证:△COD是等边三角形; (2)当a="150°时,试判断△AOD的形状,并说明理由;" (3)探究:当a为多少度时,△AOD是等腰三角形?