如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图(1)中,请你通过观察、思考、猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想BG、AE有什么数量和位置关系?请证明你的猜想.
(11·柳州) 在学习了解直角三角形的有关知识后,一学习小组到操场测量学校旗杆的高度.如图,在测点D处安置测倾器,测得旗杆顶的仰角∠ACE的大小为30º,量得仪器的高CD为1.5米,测点D到旗杆的水平距离BD为18米,请你根据上述数据计算旗杆AB的高度(结果精确到0.1米;参考数据≈1.73)
(11·柳州)某班“环卫小组”为了宣传环保的重要性,随机调查了本班10名同学的家庭在同一天内丢弃垃圾的情况. 经统计,丢垃圾的质量如下(单位:千克): 2 3 3 4 4 3 5 3 4 5根据上述数据,回答下列问题:(1)写出上述10个数据的中位数、众数;(2)若这个班共有50名同学,请你根据上述数据的平均数,估算这50个家庭在这一天丢弃垃圾的质量.
(11·柳州)如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC
(11·柳州)化简:
已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x="4." 设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N. 将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒. 求S关于t的函数关系式.