若函数满足条件:①,;②,;③.则(1) ;(写出一个满足条件的函数即可)(2)根据(1)所填函数, .
已知函数f(x)=ax2+(b+1)x+b−1,且aÎ(0,3),则对于任意的bÎR,函数F(x)=f(x)−x总有两个不同的零点的概率是
设,满足条件则点构成的平面区域面积等于 .
已知则=
如图所示,在三棱柱ABC-A1B1C1中,AA1底面A1B1C1, 底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=,P是BC1上一动点,则A1P+PC的最小值是 。
已知点A(2,0),B是圆上的定点,经过点B的直线与该圆交于另一点C,当面积最大时,直线BC的方程为 .