已知二次函数y=ax2+bx的图象经过点A(-5,0)和点B,其中点B在第一象限,且OA=OB,tan∠BAO=(1)求点B的坐标。(2)求二次函数的解析式。(3)过点B作直线BC平行于x轴,直线BC与二次函数图象的另一个交点为C,连结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标。
如图,矩形是矩形(边在轴正半轴上,边在轴正半轴上)绕点逆时针旋转得到的,点在轴的正半轴上,点的坐标为.(1)如果二次函数()的图象经过,两点且图象顶点的纵坐标为,求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点,使得为直角三角形?若存在,请求出点的坐标和的面积;若不存在,请说明理由;(3)求边所在直线的解析式.
如图①,②,在平面直角坐标系中,点的坐标为(4,0),以点为圆心,4为半径的圆与轴交于,两点,为弦,,是轴上的一动点,连结.(1)求的度数;(2)如图①,当与⊙A相切时,求的长;(3)如图②,当点在直径上时,的延长线与⊙A相交于点,问为何值时,是等腰三角形?
某商场购进枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果运回,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)如何安排甲、乙两种货车可一次性地运到?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果商场应选择哪种方案,使运输费最少?最少运费是多少?
2007年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向山区“希望小学”捐赠图书活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例分布扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成如图②的频数分布直方图.根据以上信息解答下列问题:(1)从图②中,我们可以看出人均捐赠图书最多的是_______年级;(2)估计九年级共捐赠图书多少册?(3)全校大约共捐赠图书多少册?
四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.