完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)
计算:.
如图1,的三个顶点、、分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)
(1)求点、的坐标;
(2)将绕点逆时针旋转得到△,抛物线经过、两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接、,求△的面积;
(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以、、为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.
操作体验:如图,在矩形中,点、分别在边、上,将矩形沿直线折叠,使点恰好与点重合,点落在点处.点为直线上一动点(不与、重合),过点分别作直线、的垂线,垂足分别为点和,以、为邻边构造平行四边形.
(1)如图1,求证:;
(2)特例感知:如图2,若,,当点在线段上运动时,求平行四边形的周长;
(3)类比探究:若,.
①如图3,当点在线段的延长线上运动时,试用含、的式子表示与之间的数量关系,并证明;
②如图4,当点在线段的延长线上运动时,请直接用含、的式子表示与之间的数量关系.(不要求写证明过程)
慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高为1.7米,他站在处测得塔顶的仰角为,小琴的目高为1.5米,她站在距离塔底中心点米远的处,测得塔顶的仰角为.(点、、在同一水平线上,参考数据:,,
(1)求小亮与塔底中心的距离;(用含的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度.
为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段
频数
频率
2
0.05
0.2
12
0.3
14
4
0.1
(1)表中 , ;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在 分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.