某车间有28名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个或螺母18个,第一天安排14名工人生产螺栓、14名工人生产螺母,问第二天安排多少人生产螺栓、多少人生产螺母,才能使当天生产的螺栓和螺母与第一天生产的刚好配套?(已知每个螺栓配两个螺母)
如图,AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为PA,△EBC周长记为PE,求证PE>PA.
如图,线段AB的对称轴为直线MN.P、Q在MN上,求证△PAQ≌△PBQ.
如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是轴正半轴上一动点(OD>1),连结BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图2中,过点M作MG⊥轴于点G,连结DN,若四边形DMGN为损矩形,求D点坐标.
如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为,试用含的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分?若存在,求此时BE的长;若不存在,请说明理由.
如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)判断线段AC与AE是否相等,并说明理由;(2)求过A、C、D三点的圆的直径.