(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)
(Ⅰ)求,;(Ⅱ)若从高二、高三年级抽取的人中选人,求这二人都来自高二年级的概率.
已知 (Ⅰ)求的单调增区间;(Ⅱ)当时,求的取值范围.
已知等比数列的各项均为正数,,.(Ⅰ)求数列的通项公式;(Ⅱ)设.证明:为等差数列,并求的前项和.
设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.(1)求a1,a2,a3的值;(2)求证:数列{an+2n}是等比数列;(3)证明:对一切正整数n,有++…+<.
已知函数.(Ⅰ)求的单调区间;(Ⅱ)若在区间上恒成立,求实数的取值范围.