(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知A(3,2),B(-2,7),若与线段AB相交,求的取值范围.
(本小题满分12分)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式: (i)设(rad),将表示成的函数;(ii)设(km),将表示成的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
设,方程有唯一解,已知,且(1)求数列的通项公式;(2)若,求和;(3)问:是否存在最小整数,使得对任意,有成立,若存在;求出的值;若不存在,说明理由。
已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线:与⊙相切,并且与椭圆交于不同的两点(1)求椭圆的标准方程;(2)当,且满足时,求弦长的取值范围.
已知函数(1)当的单调区间;(2)若任意给定的,使得的取值范围.