(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
(本小题满分12分)已知等比数列的前n项和为,且满足.(I)求p的值及数列的通项公式;(II)若数列满足,求数列的前n项和.
(本小题满分12分)在四棱锥,平面ABCD,PA=2.(I)设平面平面,求证:;(II)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为,求的值.
(本小题满分12分)为了参加市中学生运动会,某校从四支较强的班级篮球队A,B,C,D中选出12人组成校男子篮球队,队员来源如下表:(I)从这12名队员中随机选出两名,求两人来自同一个队的概率;(II)比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A队的人数为,求随机变量的分布列和数学期望.
(本小题满分12分)在中,角A,B,C的对边分别为,且成等差数列.(I)若的值;(II)设,求t的最大值.
选修4—5:不等式选讲设不等式的解集为, 且.(Ⅰ) 试比较与的大小;(Ⅱ) 设表示数集中的最大数, 且, 求的范围.