(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
设锐角的内角的对边分别为,,(1)求角大小(2)若,求边上的高
(1)已知, 解关于的不等式 (2)若关于的不等式的解集是,求实数的值
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
已知函数.(1)当时,求的单调区间;(2)若不等式有解,求实数m的取值菹围;(3)证明:当a=0时,.
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点.证明:直线平面;(2) 若,求二面角的平面角的余弦值.