(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.(1)求GH长的取值范围;(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.(1)求证:平面EFGH;(2)求证:四边形EFGH是矩形.
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.(1)求直线EF与平面ABCD所成角的正切值;(2)求异面直线A1C与EF所成角的余弦值.
已知定义在R上的函数f(x)=的周期为,且对一切xR,都有f(x) ; (1)求函数f(x)的表达式; (2)若g(x)=f(),求函数g(x)的单调增区间;
已知函数在一个周期内的图像下图所示。(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。