(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
设M={x|}, N={x|},求M∩N≠时a的取值范围.
已知定点A(0,1),B(0,-1),C(1,0).动点P满足:.(I)求动点P的轨迹方程,并说明方程表示的曲线类型;(II)当时,求的最大、最小值.
已知气象台A处向西300km处,有个台风中心,已知台风以每小时40km的速度向东北方向移动,距台风中心250km以内的地方都处在台风圈内,问:从现在起,大约多长时间后,气象台A处进入台风圈?气象台A处在台风圈内的时间大约多长?(精确到0.1)(提供参考数据:)
(10分)已知直线l:kx-y+1+2k=0. (1)求证:直线l恒过某个定点;(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1 5倍,问桌、椅各买多少才行?