(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
如图,在三棱锥中,点分别是棱的中点.(1)求证://平面;(2)若平面平面,,求证:.
已知向量,.(1)若,求的值;(2)若,,求的值.
已知椭圆的左、右焦点分别为、,为原点.(1)如图1,点为椭圆上的一点,是的中点,且,求点到轴的距离;(2)如图2,直线与椭圆相交于、两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.
已知函数,.(1)求的极值点;(2)对任意的,记在上的最小值为,求的最小值.
已知数列的各项都是正数,且对任意都有,其中为数列的前项和.(1)求、;(2)求数列的通项公式;(3)设,对任意的,都有恒成立,求实数的取值范围.