(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知集合(),.(1)当时,求;(2)若,求实数的取值范围.
已知函数,,其中且.(Ⅰ)当,求函数的单调递增区间;(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
设平面向量,,已知函数在上的最大值为6.(Ⅰ)求实数的值;(Ⅱ)若,.求的值.
已知函数,其中,.(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;(Ⅱ)若函数的极小值大于零,求的取值范围.
在△ABC中,角、、的对边分别为、、,满足 .(Ⅰ)求角C的大小;(Ⅱ)若,且,求△ABC的面积.