(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知数列的各项均不为0,其前n项和为,且满足,.(1)求的值;(2)求证是等差数列;(3)若,求数列的通项公式,并求
如下图,互相垂直的两条公路、旁有一矩形花园,现欲将其扩建成一个更大的三角形花园,要求点在射线上,点N在射线上,且直线过点,其中米,米.记三角形花园的面积为.(1)问:取何值时,取得最小值,并求出最小值;(2)若不超过1764平方米,求长的取值范围.
函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.
设函数()的最小值为.(1)求;(2)已知两个正数,满足,求的最小值.
已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)判断直线与曲线的位置关系;(2)为曲线上任意一点,求的取值范围.