(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知函数.(1)求不等式的解集;(2)若关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上的点的最小距离.
如图,在中,是的角平分线,的外接圆交于,.(1)求证:;(2)当时,求的长.
经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.(1)求轨迹的方程;(2)证明:;(3)若点到直线的距离等于,且的面积为20,求直线的方程.
设函数.(1)若在其定义域内为单调递增函数,求实数的取值范围;(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.