(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
(本小题满分12分)一个口袋中装有大小形状完全相同的红色球1个、黄色球2个、蓝色球个,现进行从口袋中摸球的游戏:摸到红球得1分、摸到黄球得2分、摸到蓝球得3分.若从这个口袋中随机的摸出2个球,恰有一个是黄色球的概率是.(1)求n的值;(2)从口袋中随机摸出2个球,设表示所摸2球的得分之和,求的分布列和数学期望.
(本小题满分12分)设数列的前项和满足:,等比数列的前项和为,公比为,且.(1)求数列的通项公式;(2)设数列的前项和为,求证:.
(本小题满分10分)已知函数,(1)若关于的方程只有一个实数解,求实数的取值范围;(2)若当时,不等式恒成立,求实数的取值范围;(3)若,求函数在区间上的最大值.
(本小题满分8分)已知幂函数,且。(1)求的值;(2)试判断是否存在正数,使函数在区间上的值域为,若存在求出的值;若不存在,说明理由。
(本小题满分10分)已知函数(是常数),且,.(1)求的值;(2)当时,判断的单调性并证明;(3)若不等式成立,求实数的取值范围.