(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
如图,在四棱锥中,底面为平行四边形,平面,在棱上.(I)当时,求证平面(II)当二面角的大小为时,求直线与平面所成角的正弦值.
(本小题12分)给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点.(Ⅰ)设的斜率为1,求以为直径的圆的方程;(Ⅱ)设,求直线的方程.
已知关于x的二次函数(1)设集合和,从集合中随机取一个数作为,从中随机取一个数作为,求函数在区间上是增函数的概率; (2)设点是区域内的随机点,求函数在区间上是增函数的概率。
(本小题12分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求角的大小; (Ⅱ)若角,边上的中线的长为,求的面积.
已知是等差数列,是各项为正数的等比数列,且,,. (Ⅰ)求和通项公式;(Ⅱ)若,求数列的前项和.