(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
(本小题满分12分)一个口袋巾装有标号为1,2,3的6个小球,其中标号1的小球有1个,标号2的小球有2个,标号3的小球有3个,现从口袋中随机摸出2个小球.(I)求摸出2个小球标号之和为3的概率;(II)求摸出2个小球标号之和为偶数的概率;(III)用表示摸出2个小球的标号之和,写出的分布列,并求的数学期望.
某人的一张银行卡的密码共有6位数字,每位数字都可以从0~9中任选一个,他在银行的自动提款机上取钱时,忘记了密码的最后一位数字,求:(I)任意按最后一位数字,不超过2次就按对的概率.(II)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
.将件不同的产品排成一排,若其中,两件产品排在一起的不同排法有48种,则= .
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.(1)求点C到平面PBD的距离;(2)在线段上是否存在一点,使与平面所成的角的正弦值为,若存在,指出点的位置,若不存在,说明理由.
已知圆M: ,Q是x轴上的动点,QA、QB分别切圆M于A、B两点。(1)若,求的长;(2)求证:直线AB恒过定点,并求出定点坐标.