(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
设全集.(1)解关于x的不等式;(2)记A为(1)中不等式的解集,集合,若恰有3个元素,求的取值范围.
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是(t是参数)(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.
如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P(1)求证:(2)若⊙O的半径为,OA=OM,求MN的长
已知是实数,函数.(1)若,求的值及曲线在点处的切线方程.(2)求在上的最大值.
已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.(1)求椭圆的方程;(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.