(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二项式系数.
从1到9的九个数字中取三个偶数四个奇数,试问: ①能组成多少个没有重复数字的七位数? ②上述七位数中三个偶数排在一起的有几个? ③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个? ④在①中任意两偶然都不相邻的七位数有几个?
若某一等差数列的首项为,公差为展开式中的常数项,其中m是除以19的余数,则此数列前多少项的和最大?并求出这个最大值.
求证:能被25整除。
把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1) 43251是这个数列的第几项?(2) 这个数列的第96项是多少?(3) 求这个数列的各项和.