(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
若是定义在上的增函数,且对一切满足(1)求(2)若,解不等式
(本小题7分)已知集合,若(.求实数的取值范围.
设函数,其中.⑴若的定义域为区间,求的最大值和最小值;⑵若的定义域为区间,求的取值范围,使在定义域内是单调减函数。
某小型自来水厂的蓄水池中存有水400吨水,水厂每小时可向蓄水池中注入自来水60吨。若蓄水池向居民小区不间断地供水,且小时内供水总量为吨()。⑴供水开始几小时后,蓄水池中的水量最小?最小水量为多少吨?⑵若蓄水池中的水量少于80吨,就会出现供水紧张现象,试问在一天的24小时内,有多少小时会出现供水紧张现象?并说明理由。
已知函数.(1)当时,求函数的最大值和最小值;(2)求实数的取值范围,使在区间上是单调函数,并指出相应的单调性.