(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
(本小题满分10分)从4名男生和5名女生中任选5人参加数学课外小组,求在下列条件下各有多少种不同的选法?(1)选2名男生和3名女生,且女生甲必须入选;(2)至多选4名女生,且男生甲和女生乙不同时入选.
(本小题满分10分)已知a,b,c,d∈(0,+∞),求证ac+bd≤.
(本小题12分)如图4,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且平面,求三棱锥的体积.
已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由.
如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;