(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
若无穷数列满足:①对任意,;②存在常数,对任意,,则称数列为“数列”.(Ⅰ)若数列的通项为,证明:数列为“数列”;(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意,;(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.
已知椭圆上的点到其两焦点距离之和为,且过点. (Ⅰ)求椭圆方程;(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
已知,函数.(Ⅰ)当时,求的最小值;(Ⅱ)若在区间上是单调函数,求的取值范围.
如图,在三棱柱中,平面,,, ,分别是,的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的正弦值.
已知是一个公差大于0的等差数列,且满足, .(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足:,求数列的前项和.