(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
已知:A、B是ABC的两个内角,, 其中、为相互垂直的单位矢量.若 | | =,试求tanA·tanB的值.
当m为何实数时,复数z=+(m2+3m-10)i;(1)是实数;(2)是虚数;(3)是纯虚数.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3.(1)求a、b的值;(2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立;令.是否存在一个实数t,使得当时,g(x)有最大值1?
讨论函数的单调性,并确定它在该区间上的最大值最小值.