(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
在△ABC中,角A,B,C所对的边分别为,且..(1)求的值;(2)若面积的最大值.
设函数,其中.(1)当时,求曲线在点处的切线的斜率;(2)求函数的单调区间与极值;(3)已知函数由三个互不相同的零点,且,若对任意的,恒成立,求实数的取值范围.
已知递增的等比数列的前n项和满足:,且是和的等差中项(1)求数列的通项公式;(2)若,求使成立的正整数n的值.
已知向量,且,若相邻两对称轴的距离不小于.(1)求正实数的取值范围;(2)在中,分别是的对边,,当最大时,,试求的面积.
已知函数的定义域为不等式的解集,且在定义域内单调递减,求实数的取值范围.