如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE.求证:.
某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?
(1)如图1,△ABC中,∠A=60°,∠B:∠C=1:5,求∠B的度数.(2)如图2,点M为正方形ABCD对角线BD上一点,分别连接AM、CM.求证:AM=CM.
(1)计算:(a+b)(a﹣b)+2b2.(2)解方程:.
(11·十堰)12分)如图,已知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3)。(1)求抛物线的解析式;(2)如图(1),已知点H(0,-1).问在抛物线上是否存在点G(点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(-2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.
(11·十堰)如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= ;(3)设△ABC的面积的平方为W,求W的最大值。