(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为(1)求椭圆的标准方程;(2)若直线交椭圆于两点,当时求直线的方程
如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD= (1)求证:AO平面BCD,(2)求异面直线AB与CD所成角的大小,(3)求两面角O—AC—D的大小。
已知数列。(I)证明:数列是等比数列,并求出数列的通项公式;(II)记,数列的前n项和为,求使的n的最小值。
某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类的概率都是,他们的投票相互没有影响。规定:若投票结果中至少有2张“同意”票,则决定对该项目投资,否则放弃投资。(Ⅰ)求此公司决定对该项目投资的概率;(Ⅱ)求此公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.
已知向量,函数。(I)求函数的最小正周期和值域.(II)在中.a,b,c分别是角A,B,C的对边,且且,求a,b的值.
在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面内两点G,M同时满足下列条件①++=0;②||=||=||;③∥.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.