如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,M是BD的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求证:ME∥平面ABC;(2)试问在棱DC上是否存在点N,使NM⊥平面BDE? 若存在,确定点N的位置;若不存在,请说明理由.
已知等比数列{an},公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式。
已知x,y∈(-,)且xy=-1,求s=的最小值。
某公司一年购某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x为多少吨?
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求的最小值为。
求证ab+bc+cd+da≤a2+b2+c2+d2并说出等号成立的条件.