首页 / 初中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较易
  • 浏览 2086

[问题提出]
学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
[初步思考]我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
[深入探究]
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据________,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹).

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接填写结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若________,则△ABC≌△DEF.

登录免费查看答案和解析
相关知识点

问题提出学习了三角形全等的判定方法(即SAS,ASA,AAS