某班元旦迎新有奖活动中有一节目,参与者同时掷出三个各面分别标有数字1,2,3,4且质地均匀的小正四面体,规定:每位参与者只掷依次,选取着地一面的数字,如果掷出所取的三个数字都不相同,如“1、2、3”,“1、2、4”等情形为获奖.(1)求参与者获奖的概率;(2)获奖一次得到十元的奖品,否则得到纪念奖2元的奖品.求甲、乙两位参与者总的奖品金额恰为12元的概率.
已知函数相邻两个对称轴之间的距离是,且满足,(1)求的单调递减区间;(2)在钝角△ABC中,a、b、c分别为角A、B、C的对边,,求△ABC的面积.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当弦AB被点P平分时,写出直线l的方程; (2)当直线l的倾斜角为45º时,求弦AB的长.
如图,在四棱锥中,底面是矩形,已知,(1)证明平面;(2)求异面直线与所成的角的正切值;(3)求四棱锥的体积。
已知直线经过两点A(2,1),B(6,3) (1)求直线的方程(2)圆C的圆心在直线上,并且与轴相切于点(2,0),求圆C的方程(3)若过B点向(2)中圆C引切线BS、BT,S、T分别是切点,求ST直线的方程.
如图所示,在直三棱柱中,,∠ACB=90°,M是 的中点,N是的中点(Ⅰ)求证:MN∥平面 ;(Ⅱ)求点到平面BMC的距离;