化简:(每小题4分,共8分)(1) (2)
阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为 ;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1) .①利用构图法在答题卡的图2中画出三边长分别为的格点△DEF; ②计算△DEF的面积为 .(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若, ,则六边形AQRDEF的面积为__________.
如图, AE是⊙O直径,D是⊙O上一点,连结AD并延长使AD=DC,连结CE交⊙O于点B,连结AB.过点E的直线与AC的延长线交于点F,且∠F=∠CED.(1)求证:EF是⊙O切线;(2)若CD=CF=2,求BE的长.
某校开展“我运动、我健康、我阳光、我快乐”的寒假体育锻炼活动,要求学生每天体育锻炼一小时.开学后小明对本年级学生是否参加体育锻炼的情况进行了调查,并对参加锻炼的学生进行了身体健康测试,绘制成如下统计图.根据以上信息,解答下列问题:(1)小明本次共调查了多少名学生?(2)参加体育锻炼的学生中,有多少人身体健康指数提升?(3)若该校有1 000名学生,请你估计有多少人假期参加体育锻炼?要使两年后参加体育锻炼的人数增加到968人,假设平均每年的增长率相同,求这个增长率.
已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC, BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F, DF="6." (1) 求AE的长;(2) 求 的值.
列方程或方程组解应用题:为保证“燕房线”轻轨建设,我区对一条长2 500米的道路进行改造.在改造了1 000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求原来每天改造道路多少米?