(本小题满分12分)如图,在四棱锥中,,,平面,为的中点,.(1)求证:∥平面;(2)求四面体的体积.
)已知向量=(,),=(1,),且=,其中、、分别为的三边、、所对的角. (Ⅰ)求角的大小; (Ⅱ)若,且,求边的长.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)当时,不等式恒成立,求实数的取值范围. (Ⅲ)求证:(,e是自然对数的底数).
已知数列的前项和,满足:. (Ⅰ)求数列的通项; (Ⅱ)若数列的满足,为数列的前项和,求证:.
如图,在长方体,中,,点在棱AB上移动. (Ⅰ)证明:; (Ⅱ)当为的中点时,求点到面的距离; (Ⅲ)等于何值时,二面角的大小为.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时).