请分别画出下图中各图的所有对称轴.(1)正方形 (2)正三角形 (3)相交的两个圆
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k (k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形.(1)当为等腰直角三角形时,求(2)当为等边三角形时,求的值.(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?
如图,在△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,E、F分别为BC、AB上的点,AE⊥CF于点G,交CD于点H.(1)求证:AH=CF;(2)若CE=BF,求证:BE=2DH.
“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m的值.