如图是瑞典人科赫(Koch)在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是,从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边.分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为,则可算出下图每步变换后科赫雪花的周长:=3,= ,= ,…,则= .
从一副扑克牌中取出1张红桃、2张黑桃共3张牌,将这3张牌洗匀后,从中任取1张牌恰好是黑桃的概率是.
请你规定一种适合任意非零实数a、b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=,(-4)⊕(-3)=(-3)⊕(-4)=-,(-3)⊕5=5⊕(-3)=-,你规定的新运算a⊕b=(用a,b的一个代数式表示).
如图将矩形ABCD绕点A顺时针旋转到矩形AB/C/D/的位置,旋转角为α(0°<α<90°),.若∠1=118°,则∠α=°.
随机掷一枚均匀硬币三次,至少有两次正面朝上的概率是_______。
在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,写出一个符合题意的k的值。