如图甲,已知ΔABC和ΔCEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?证明你的猜想.(2)将图中的ΔCEF绕点C旋转一定的角度,得到图乙,(1)中的结论还成立吗? 做出判断并说明理由.
如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E, 再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.
某市今年的理化生实验操作考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W1,W2,W3表示)、三个化学物实验题(题签分别用代码H1、H2、H3表示),二个生物实验题(题签分别用代码S1,S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签. (1)请你用画树状图的方法,写出他恰好抽到H2的情况; (2)求小亮抽到的题签代码的下标(例如“W2”的下标为“2”)之和为7的概率是多少?
如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.
先化简,再求值:,其中.
已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.