如图甲,已知ΔABC和ΔCEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?证明你的猜想.(2)将图中的ΔCEF绕点C旋转一定的角度,得到图乙,(1)中的结论还成立吗? 做出判断并说明理由.
如图,已知为坐标原点,点的坐标为,的半径为1,过作直线平行于轴,点在上运动.(1)当点运动到圆上时,求线段的长.(2)当点的坐标为时,试判断直线与的位置关系,并说明理由.
学校要从甲、乙、丙三名中长跑运动员中选出一名奥运火炬传递手.先对三人一学期的1000米测试成绩作了统计分析如表一;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表二;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图三,一票计2分.(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.(2)如果对奥运知识、综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.
阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组.如:由(2)得,代入(1)消元得到关于的方程:,将代入得:,方程组的解为请你用代入消元法解方程组:
将图(1)中的矩形沿对角线剪开,再把沿着方向平移,得到图(2)中的.其中是与的交点,是与的交点.在图(2)中除与全等外,还有几对全等三角形(不得添加辅助线和字母)?请一一指出,并选择其中一对证明.
如图,两幢楼高,两楼间的距离,当太阳光线与水平线的夹角为时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,,)