根据条件求函数解析式:(6分× 2 = 12分)(1)已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),求该抛物线的解析式;(2)抛物线经过A(1,4)、B(-1,0)、C(-2,7)三点,求抛物线的解析式.
已知二次函数.(1)二次函数的顶点在轴上,求的值;(2)若二次函数与轴的两个交点A、B均为整数点(坐标为整数的点),当为整数时,求A、B两点的坐标.
现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.________思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、,请利用图2的正方形网格(每个小正方形的边长为)画出相应的△ABC,并求出它的面积是: .探索创新:(3)若△ABC三边的长分别为、、 ,请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为: .
某班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择情况统计图: 训练前定时定点投篮测试进球数统计图: 训练后篮球定时定点投篮测试进球数统计表:
请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;(2)补全“训练前篮球定时定点投篮测试进球数统计图;(3)训练后篮球定时定点投篮人均进球数 .
如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.
在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,BC=2cm.(1)求∠CBD的度数;(2)求下底AB的长.