某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为,,,且各轮考核通过与否相互独立。(1)求甲通过该高校自主招生考试的概率;(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。记学生甲得到教育基金的金额为,求的分布列和数学期望。
假设关于某设备的使用年限和所支出的维修费用(万元)统计数据如下:
若有数据知对呈线性相关关系.求: (1) 求出线性回归方程的回归系数; (2) 估计使用10年时,维修费用是多少。
如图建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在表示的曲线上,其中与发射方向有关,炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.
已知函数 (1) 若是的极值点,求在[1,]上的最大值; (2) 若在区间[1,+)上是增函数,求实数的取值范围.
一个袋中装有四个形状大小完全相同的球,球的编号分别为, (1)从袋中随机取出两个球,求取出的球的编号之和不大于的概率; (2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.
已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为. (1)求抛物线的方程; (2)求双曲线的方程.