在一次自主招生选拔考核中,每个候选人都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某候选人能正确回答第一,二,三,四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)该选手在选拔过程中回答问题的个数记为,求随机变量的分布列和期望.
(本小题满分14分)已知函数. (Ⅰ)若为的极值点,求的值; (Ⅱ)若的图象在点()处的切线方程为,求在区间上的最大值; (Ⅲ)当时,若在区间上不单调,求的取值范围.
(本小题满分13分)设函数. (Ⅰ)求的最小正周期; (Ⅱ)当时,求函数的最大值和最小值.
(本小题满分13分)已知集合,. (1)当时,求;(2)若,求实数的值.
(本题10分)定义在R上的函数,对任意的,满足,当时,有,其中. (1)求的值; (2)求的值并判断该函数的奇偶性; (3)求不等式的解集.
(本题10分)某市居民自来水收费标准如下:每月用水不超过时每吨元,当用水超过时,超过部分每吨元,某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为,。 (1)求关于的函数; (2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量和水费。