如图,正方形所在平面与平面垂直,是和的交点,且. (1)求证:⊥平面; (2)求直线与平面所成角的大小.
(本小题共13分)将这个数随机排成一列,得到的一列数称为的一个排列.定义为排列的波动强度.(Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度;(Ⅱ)当时,求的最大值,并指出所对应的一个排列.
(本小题满分14分)已知椭圆:的上顶点为,两个焦点为、,为正三角形且周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知圆:,若直线与椭圆只有一个公共点,且直线与圆相切于点;求的最大值.
(本小题满分13分)已知函数,其中为常数,且.(Ⅰ)若曲线在点(1,)处的切线与直线垂直,求的值;(Ⅱ)若函数在区间[1,2]上的最小值的表达式.
(本小题满分13分)从含有两件正品和一件次品的3件产品中,每次任取1件(Ⅰ)每次取出后不放回,连续取两次,求取出的产品中恰有一件次品的概率;(Ⅱ)每次取出后放回,连续取两次,求取出的产品中恰有一件次品的概率.
(本小题满分14分) 如图,在四棱锥中,底面为矩形,平面平面,,,为的中点,求证:(Ⅰ)平面;(Ⅱ)平面平面;(Ⅲ)求四棱锥的体积.