在Rt△ABC中,∠CAB=90°,AB=AC.(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;②若AM=,BM=,AB=,试利用图①验证勾股定理=;(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
将下列各有理数填入相应的集合内: 整数:{ …}负分数:{ …} 正数:{ …}负数:{ …}
如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒 2cm的速度沿折线A—C—B向点B运动,设运动时间为t秒(t>0), (1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由; (2)若点P恰好在△ABC的角平分线上,请直接写出t的值.
如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1, l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上, (1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法); (2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.
如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方 形的顶点上. (1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′; (2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度是.