下列命题:①数列为递减的等差数列且,设数列的前项和为,则当时,取得最大值;②设函数,则满足关于的方程的充要条件是对任意均有;③在长方体中,,直线与平面所成角的正弦值为;④定义在上的函数满足且,已知,则是的充要条件. 其中正确命题的序号是 (把所有正确命题的序号都写上).
已知,, ,若共同作用在物体上,使物体从点(2,-3,2)移到(4,2,3),则合力所作的功_______________.
在平面直角坐标系中,已知△顶点 分别为椭圆的两个焦点,顶点在该椭圆上,则=_______________.
用一些棱长为1cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图,则这个几何体的体积最大是cm3.
定义运算符号:“”,这个符号表示若干个数相乘,例如:可将1×2×3×…×n记作,,其中为数列中的第项.若________.
过抛物线的焦点F的直线与抛物线在第一象限的交点为A,与抛物线准线的交点为B,点A在抛物线准线上的射影为C,若,则抛物线的方程为______________.