如图,矩形ABCD中,E为BC上一点,DF⊥AE于点F。(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长。
(本题8分)如图,在Rt△ABC中,AC=4,BC=3.在Rt△ABC内并排放入(不重叠)n个小正方形纸片,使这些纸片的一边都在AB上,首尾两个正方形各有一个顶点D、E分别在AC、BC上,求小正方形的边长(用n的代数式表示)。
(本题8分)如图,⊙O的直径AB平分弦CD,CD =10cm,AP:PB="1" : 5.求⊙O的半径.
(本题6分)已知二次函数的图像经过点(0,3),顶点坐标为(-4,19),求这个二次函数的解析式,以及图像与x轴的交点坐标。
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图,在半径是2的⊙O中,点Q为优弧的中点,圆心角∠MON=60°,在上有一动点P,且点P到弦MN所在直线的距离。(1)求弦MN的长;(2)试求阴影部分面积与的函数关系式,并写出自变量的取值范围;(3)试分析比较,当自变量为何值时,阴影部分面积与的大小关系。