(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量,(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).
设为等差数列,为数列的前项和,已知,,为数列的前项和. (1)求; (2)求,及的最小值.
已知成等差数列的四个数之和为26,第二个数和第三个之积为40,求这四个数.
已知数列{}的前n项和为,且-1,,成等差数列,n∈N*,=1,函数. (1)求数列{}的通项公式; (2)设数列{}满足=,记数列{}的前n项和为,试比较与的大小.
已知在锐角△ABC中,a,b, c分别为角A,B,C的对边,且sin(2C-)=. (1)求角C的大小; (2)求的取值范围.
设函数=. (1)若对一切实数,恒成立,求m的取值范围; (2)若对于任意,恒成立,求的取值范围.